Vision HDL Toolbox™
Getting Started Guide

MATLAB

R2019%a >) MathWorks:

X B

How to Contact MathWorks

Latest news: www .mathworks. com

Sales and services: www.mathworks.com/sales_and_services
User community: www .mathworks.com/matlabcentral
Technical support: www . mathworks.com/support/contact_us
Phone: 508-647-7000

The MathWorks, Inc.
1 Apple Hill Drive
Natick, MA 01760-2098

Vision HDL Toolbox™ Getting Started Guide
© COPYRIGHT 2015-2019 by The MathWorks, Inc.

The software described in this document is furnished under a license agreement. The software may be used
or copied only under the terms of the license agreement. No part of this manual may be photocopied or
reproduced in any form without prior written consent from The MathWorks, Inc.

FEDERAL ACQUISITION: This provision applies to all acquisitions of the Program and Documentation by,
for, or through the federal government of the United States. By accepting delivery of the Program or
Documentation, the government hereby agrees that this software or documentation qualifies as commercial
computer software or commercial computer software documentation as such terms are used or defined in
FAR 12.212, DFARS Part 227.72, and DFARS 252.227-7014. Accordingly, the terms and conditions of this
Agreement and only those rights specified in this Agreement, shall pertain to and govern the use,
modification, reproduction, release, performance, display, and disclosure of the Program and
Documentation by the federal government (or other entity acquiring for or through the federal government)
and shall supersede any conflicting contractual terms or conditions. If this License fails to meet the
government's needs or is inconsistent in any respect with federal procurement law, the government agrees
to return the Program and Documentation, unused, to The MathWorks, Inc.

Trademarks

MATLAB and Simulink are registered trademarks of The MathWorks, Inc. See
www . mathworks . com/trademarks for a list of additional trademarks. Other product or brand
names may be trademarks or registered trademarks of their respective holders.

Patents

MathWorks products are protected by one or more U.S. patents. Please see
www . mathworks.com/patents for more information.

Revision History

March 2015 Online only New for Version 1.0 (Release R2015a)
September 2015 Online only Revised for Version 1.1 (Release R2015b)
March 2016 Online only Revised for Version 1.2 (Release R2016a)
September 2016 Online only Revised for Version 1.3 (Release R2016b)
March 2017 Online only Revised for Version 1.4 (Release R2017a)
September 2017 Online only Revised for Version 1.5 (Release R2017h)
March 2018 Online only Revised for Version 1.6 (Release 2018a)
September 2018 Online only Revised for Version 1.7 (Release 2018b)
March 2019 Online only Revised for Version 1.8 (Release 2019a)

https://www.mathworks.com
https://www.mathworks.com/sales_and_services
https://www.mathworks.com/matlabcentral
https://www.mathworks.com/support/contact_us
https://www.mathworks.com/trademarks
https://www.mathworks.com/patents

Contents

Vision HDL Toolbox Getting Started

1]

Vision HDL Toolbox Product Description 1-2
Key Features i, 1-2
Design Video Processing Algorithms for HDL in Simulink . . . 1-3
Design a Hardware-Targeted Image Filter in MATLAB 1-12
MATLAB Vision Algorithm to Simulink Hardware-Targeted
Model Workflow 1-18
Configure the Simulink Environment for HDL Video Processing
.. 1-25
About Simulink Model Templates 1-25
Create Model Using Vision HDL Toolbox Model Template ... 1-25

Vision HDL Toolbox Model Template 1-26

iii

Vision HDL Toolbox Getting Started

* “Vision HDL Toolbox Product Description” on page 1-2
» “Design Video Processing Algorithms for HDL in Simulink” on page 1-3
* “Design a Hardware-Targeted Image Filter in MATLAB” on page 1-12

* “MATLAB Vision Algorithm to Simulink Hardware-Targeted Model Workflow”
on page 1-18

* “Configure the Simulink Environment for HDL Video Processing” on page 1-25

1 vision HDL Toolbox Getting Started

Vision HDL Toolbox Product Description

1-2

Design image processing, video, and computer vision systems for FPGAs and
ASICs

Vision HDL Toolbox provides pixel-streaming algorithms for the design and
implementation of vision systems on FPGAs and ASICs. It provides a design framework
that supports a diverse set of interface types, frame sizes, and frame rates, including
high-definition (1080p) video. The image processing, video, and computer vision
algorithms in the toolbox use an architecture appropriate for HDL implementations.

The toolbox algorithms are designed to generate readable, synthesizable code in VHDL
and Verilog (with HDL Coder™). The generated HDL code can process 1080p60 in real
time.

Toolbox capabilities are available as MATLAB® System objects and Simulink® blocks.

Key Features

* Video synchronization signal controls for handling nonideal timing and resolution
variations

* Configurable frame rates and sizes, including 60FPS for high-definition (1080p) video

* Frame-to-pixel and pixel-to-frame conversions to integrate with frame-based
processing capabilities in MATLAB and Simulink

* Image processing, video, and computer vision algorithms with a pixel-streaming
architecture, including image enhancement, filtering, morphology, and statistics

* Implicit onchip data handling using line memory
* Support for HDL code generation and real-time verification

Design Video Processing Algorithms for HDL in Simulink

Design Video Processing Algorithms for HDL in Simulink

This tutorial shows how to design a hardware-targeted image filter using Vision HDL
Toolbox™ blocks. It also uses Computer Vision System Toolbox™ blocks.

The key features of a model for hardware-targeted video processing in Simulink® are:

Streaming pixel interface: Blocks in Vision HDL Toolbox use a streaming pixel
interface. Serial processing is efficient for hardware designs, because less memory is
required to store pixel data for computation. The serial interface allows the block to
operate independently of image size and format and makes the design more resilient
to video timing errors. For further information, see “Streaming Pixel Interface”.

Subsystem targeted for HDL code generation: Design a hardware-friendly pixel-
streaming video processing model by selecting blocks from the Vision HDL Toolbox
libraries. The part of the design targeted for HDL code generation must be in a
separate subsystem.

Conversion to frame-based video: For verification, you can display frame-based
video or compare the result of your hardware-compatible design with the output of a
Simulink behavioral model. Vision HDL Toolbox provides a block that allows you to
deserialize the output of your design.

Open Model Template

This tutorial uses a Simulink model template to get started.

Click the Simulink button, or type simulink at the MATLAB® command prompt. On the
Simulink start page, find the Vision HDL Toolbox section, and click the Basic Model
template.

The template creates a new model that you can customize. Save the model with a new
name.

1-3

1 vision HDL Toolbox Getting Started

ideo
Viewar

h J

Image

Input Video Viewer

rhinos.avi

lesired sample timea as

Video
Viewer

h

h

imageln imageOut Image

‘Video Source

Behavioral Algorithm Behavioral Video Viewsr

pixed #| pixelin - pixelOut | pixel frame F—
—| frameFrame To Pixels Fixals To Frame
cirl | cirlin ciriCut ¥ cirl validOut J,
Frame To Pixels HOL Algarithm Pixels To Frame n
n1
The model comarsas of thres vidss strsams dsplayed on the video viswers,
1. The first video viewer displays the input video stream. HOL Vid i
2. The Ingust viden |s passed through e Behavioral Algorthm subsystem whilch represents the Sulkframe matal of the algorhm to be porded io HOL. 1080 Viewer
Thie cutput of the Bahawioral Akorihm subsystam is dispiayat on ha Bahawiaral Visss Viawer. with Enable

3. On e third stream, the INput vided |s convertad io a sireaming pixe| format using the Frame 1o Plxels bocks, passed through the HDL Algorkhm

subsysbem and then converted back 1o a frame using the Fixets o Frame biock
4. The model Is configured for HOL code generatian using the hdlsetup funclion
5. The widan format s defined by Model Simulaiion Callback Parameters (Pl -> Model Propertias .= Model Proparties == Callbacks -= InRFan).
. Ta run this moded, you must have a license for the Computer Vision System Toalbox™

You can
1. Add blocks {o the Behawional Algortthm and HOL algorithm subsysiems.

2. Change the videa farmat by chancing e satings In iha Video sauwrce, Frame To Pleals and Plxels To Frama bocks.

3. Ganarals HOL code far the HOL Algorithim subsysiam by right-clicking on the subsystem - HOL Coder -> Generase HOL far Subsystem.

1-4

Import Data

The template includes a Video Source block that contains a 240p video sample. Each pixel
is a scalar uint8 value representing intensity. A best practice is to design and debug your
design using a small frame size for quick debug cycles, before scaling up to larger image
sizes. You can use this 240p source to debug a design targeted for 1080p video.

Serialize Data

The Frame To Pixels block converts framed video to a stream of pixels and control
structures. This block provides input for a subsystem targeted for HDL code generation,
but it does not itself support HDL code generation.

The template includes an instance of this block. To simulate with a standard video format,
choose a predefined video padding format to match your input source. To simulate with a
custom-size image, choose the dimensions of the inactive regions that you want to
surround the image with. This tutorial uses a standard video format.

Design Video Processing Algorithms for HDL in Simulink

Open the Frame To Pixels block dialog box to view the settings. The source video is in
240p grayscale format. A scalar integer represents the intensity value of each pixel. To
match the input video, set Number of components to 1, and the Video format to 240p.

Note : The sample time of the video source must match the total number of pixels in the
frame size you select in the Frame To Pixels block. Set the sample time to Total pixels per
line x Total lines. In the InitFcn callback, the template creates a workspace variable,
totalPixels, for the sample time of a 240p frame.

1-5

1 vision HDL Toolbox Getting Started

1-6

“L Function Block Parameters: Frame To Pixels

Frame To Pixels (mask) (link)

Converts a full frame image to pixel stream.

Parameters

Mumber of components:

Video format:

240p

Video Format Parameters
Active pixels per line:
Total pixels per line:
Starting active line:

Front porch:

320 Active video lines: 240
402 Total video lines: 324
1 Ending active line: 240
44 Back porch: 38
Total pixels per line
- -
Starting active line j
Active pixels per line
Back € Front
Porch Act ive Porch
‘-HF

Total video lines

Active video lines

Y

Video

Ending active IineJ

OK]| Cancel ||

Help

=]

Design Video Processing Algorithms for HDL in Simulink

Design HDL-Compatible Model

Design a subsystem targeted for HDL code generation, by modifying the HDL Algorithm
subsystem. The subsystem input and output ports use the streaming pixel format
described in the previous section. Open the HDL Algorithm subsystem to edit it.

In the Simulink Library Browser, click Vision HDL Toolbox. You can also open this library
by typing visionhdllib at the MATLAB command prompt.

Select an image processing block. This example uses the Image Filter block from the
Filtering sublibrary. You can also access this library by typing visionhdlfilter at the
MATLAB command prompt. Add the Image Filter block to the HDL Algorithm subsystem
and connect the ports.

pixel pixel 1]

pixelin Image Filter pixalOut

cir ctr NED)

ctrlin = ctriCut
Image Filter

Design Behavioral Model

You can visually or mathematically compare your HDL-targeted design with a behavioral
model to verify the hardware design and monitor quantization error. The template
includes a Behavioral Model subsystem with frame-based input and output ports for this
purpose. Double-click on the Behavioral Model to edit it.

For this tutorial, add the 2-D FIR Filter block from Computer Vision System Toolbox. This
block filters the entire frame at once.

Open the 2-D FIR Filter block and make the following changes to match the configuration
of the Image Filter block from Vision HDL Toolbox:

* Set Coefficients to ones(4,4) /16 to implement a 4x4 blur operation.
* Set Padding options to Symmetric.
* On the Data Types tab, under Data Type, set Coefficients to fixdt(0,2,4).

Deserialize Filtered Pixel Stream

Use the Pixels To Frame block included in the template to deserialize the data for display.

1-7

1 vision HDL Toolbox Getting Started

1-8

Open the Pixels To Frame block. Set the image dimension properties to match the input
video and the settings you specified in the Frame To Pixels block. For this tutorial, the
Number of components is set to 1 and the Video format is set to 240p. The block
converts the stream of output pixels and control signals back to a matrix representing a

frame.

Display Results and Compare to Behavioral Model

Use the Video Viewer blocks included in the template to compare the output frames
visually. The validOut signal of the Pixels To Frame block is connected to the Enable
port of the viewer. Run the model to display the results.

[Behavioral Videa Viewer o | =2 | = |
File Tools View Simulation Help u
R OB A a &) o v

®kb® @

Ready

[:243x323 T=1302450.000

Design Video Processing Algorithms for HDL in Simulink

(] HOL Video Viewer ElIENEE
File Tools View Simulation Help e
B OB A Q | Lo "

® @@

Feady 240320 T=1302450.000

1-9

1 vision HDL Toolbox Getting Started

[9] Input Video Viewer (==]=]
File Tools View Smulation Help >
B OB A Q | Lo "

I B

Feady 240320 T=1302450.000

Generate HDL Code

Once your design is working in simulation, you can use HDL Coder™ to generate HDL
code for the HDL Algorithm subsystem. See “Generate HDL Code From Simulink”.

See Also

Related Examples
. “Gamma Correction”

1-10

See Also

More About

. “Configure the Simulink Environment for HDL Video Processing” on page 1-25

1-11

1 vision HDL Toolbox Getting Started

Design a Hardware-Targeted Image Filter in MATLAB

1-12

This tutorial shows how to design a hardware-targeted image filter using Vision HDL
Toolbox™ objects.

The key features of a model for hardware-targeted video processing in MATLAB® are:

Streaming pixel interface: System objects in Vision HDL Toolbox use a streaming
pixel interface. Serial processing is efficient for hardware designs, because less
memory is required to store pixel data. The serial interface enables the object to
operate independently of image size and format and makes the design more resilient
to video timing errors. For further information, see “Streaming Pixel Interface”.

Function targeted for HDL code generation: Once the data is converted to a pixel
stream, you can design a hardware model by selecting System objects from the Vision
HDL Toolbox libraries. The part of the design targeted for HDL code generation must
be in a separate function.

Conversion to frame-based video: For verification, you can display frame-based
video, or you can compare the result of your hardware-compatible design with the
output of a MATLAB frame-based behavioral model. Vision HDL Toolbox provides a
System object™ that enables you to deserialize the output of your design.

Import Data

Read an image file into the workspace. This sample image contains 256x256 pixels. Each
pixel is a single uint8 value representing intensity. To reduce simulation speed while
testing, select a thumbnail portion of the image.

Simulating serial video in the MATLAB interpreted language can be time-consuming.
Once you have debugged the design with a small image size, use MEX code generation to
accelerate testing with larger images. See “Accelerate a Pixel-Streaming Design Using
MATLAB Coder”.

origIm = imread('rice.png');

origImSize = size(origIm)

imActivePixels = 64;

imActivelines = 48;

inputIm = origIm(1l:imActivelines,1l:imActivePixels);
figure

imshow(inputIm, 'InitialMagnification',300)

title 'Input Image'

Design a Hardware-Targeted Image Filter in MATLAB

origImSize =

256 256

Input Image

Serialize Data

The visionhdl.FrameToPixels System object converts framed video to a pixel stream
and control structure. This object provides input for a function targeted for HDL code
generation, but it does not itself support HDL code generation.

To simulate with a standard video format, choose a predefined video padding format to
match your input source. To simulate with a custom-sized image, choose dimensions of
inactive regions to surround the image. This tutorial uses a custom image. The properties
of the visionhdl.FrameToPixels object correspond to the dimensions in the diagram.

1-13

1 vision HDL Toolbox Getting Started

1-14

Total pixels per line

Starting active line j

A

I Active pixels perline
§ Back € " Front
< Porch E Act i“e Porch
—g -Hr g . Hl-
z 2| Video
L >
2 =

| <Y

Ending active line J

Y

Create a visionhdl.FrameToPixels object and set the image properties. The image is
an intensity image with a scalar value representing each pixel, therefore set
NumComponents property to 1. This tutorial pads the thumbnail image with 5 inactive
lines above and below, and 10 inactive pixels on the front and back of each line.

Use the getparamfromfrm2pix function to get useful image dimensions from the
serializer object. This syntax discards the first two returned values, and keeps only the
total number of pixels in the padded frame. Call the object to convert the image into a
vector of pixels and a vector of control signals.

Note: This syntax runs only in R2016b or later. If you are using an earlier release, replace
each call of an object with the equivalent step syntax. For example, replace
myObject(x) with step(my0Object,x).

frm2pix = visionhdl.FrameToPixels(...
"NumComponents',1, ...
'VideoFormat', 'custom', ...
"ActivePixelsPerLine',imActivePixels, ...

Design a Hardware-Targeted Image Filter in MATLAB

"ActiveVideolLines',imActivelLines, ...
'TotalPixelsPerLine',imActivePixels+20, ...
'TotalVideoLines',imActivelines+10, ...
'StartingActiveline',6, ...
'"FrontPorch',10);

[~,~,numPixelsPerFrame] = getparamfromfrm2pix(frm2pix);
[pixel,ctrl] = frm2pix(inputlIm);

Design HDL-Compatible Model

Select an image processing object from the visionhdl library. This tutorial uses
visionhdl.ImageFilter.

Construct a function containing a persistent instance of this object. The function
processes a single pixel by executing one call to the object.

The ctrlInand ctrlOut arguments of the object are structures that contain five control
signals. The signals indicate the validity of each pixel and the location of each pixel in the
frame.

Set the filter coefficients of the visionhdl.ImageFilter to perform a 2x2 blur
operation.

For this tutorial, you do not need to change the LineBufferSize property of the filter
object. This parameter does not affect simulation speed, so it does not need to be
modified when simulating with a small test image. When choosing LineBufferSize,
select a power of two that accommodates the active line size of the largest required frame
format. The default value, 2048, accommodates 1080p video format.

function [pixOut,ctrlOut] = HDLTargetedDesign(pixIn,ctrlIn)

persistent filt2d
if isempty(filt2d)
filt2d = visionhdl.ImageFilter(...

'"Coefficients',ones(2,2)/4,...
'CoefficientsDataType', 'Custom', ...
"CustomCoefficientsDataType',numerictype(0,1,2),...
'PaddingMethod', 'Symmetric');

end

[pixQut,ctrlOut] = filt2d(pixIn,ctrllIn);

1-15

1 vision HDL Toolbox Getting Started

1-16

end

Preallocate the output vectors for a more efficient simulation. Then, call the function once
for each pixel in the padded frame, which is represented by the pixel vector.

pixelOut zeros (numPixelsPerFrame, 1, 'uint8');
ctrlout repmat(pixelcontrolstruct,numPixelsPerFrame,1);
for p = 1l:numPixelsPerFrame
[pixelOut(p),ctrlOut(p)] = HDLTargetedDesign(pixel(p),ctrl(p));
end

Deserialize Filtered Pixel Stream

The visionhdl.PixelsToFrame System object converts a pixel stream to frame-based
video. Use this object to deserialize the filtered data from visionhdl.ImageFilter. Set
the image dimension properties to match the test image. Call the object to convert the
output of the HDL-targeted function to a matrix.

pix2frm = visionhdl.PixelsToFrame(...
"NumComponents',1, ...
'VideoFormat', 'custom', ...
"ActivePixelsPerLine',imActivePixels, ...
"ActiveVideolLines',imActivelines);

[outputIm,validIm] = pix2frm(pixelOut,ctrlOut);
Display Results

Use the imshow function to display the result of the operation.

if validIm
figure
imshow(outputIm, 'InitialMagnification',300)
title 'Output Image'

end

See Also

Output Image

-

Compare to Behavioral Model

If you have a behavioral model of the design, you can compare the output frames visually
or mathematically. For filtering, you can compare visionhdl.ImageFilter with the
imfilter function in Image Processing Toolbox™. The imfilter function operates on
the frame as a matrix and return a modified frame as a matrix. You can compare this
matrix with the matrix output of the pix2frm object.

To avoid dependency on a Image Processing Toolbox license, this tutorial does not
perform a compare.

HDL Code Generation

Once your design is working in simulation, use HDL Coder™ to generate HDL code for
the HDLTargetedDesign function. See “Generate HDL Code From MATLAB”.

See Also
Related Examples

. “Pixel-Streaming Design in MATLAB”
. “Accelerate a Pixel-Streaming Design Using MATLAB Coder”

1-17

1 vision HDL Toolbox Getting Started

MATLAB Vision Algorithm to Simulink Hardware-Targeted
Model Workflow

1-18

This example shows how to create a hardware-targeted design in Simulink® that
implements the same behavior as a MATLAB® reference design.

Workflow

Image Processing Toolbox™ and Computer Vision Toolbox™ functions operate on framed,
floating-point and integer data and provide excellent behavioral references. Hardware
designs must use streaming Boolean or fixed-point data.

This example shows how to perform a framed image processing operation in MATLAB,
and then implement the same operation in a Simulink model using streaming data. The
Simulink model converts the input video to a pixel stream for hardware-friendly design.
The same data is applied to both the hardware algorithm in Simulink and the behavioral
algorithm in MATLAB. The Simulink model converts the output pixel stream to frames and
exports those frames to MATLAB for comparison against the behavioral results.

MATLAB Vision Algorithm to Simulink Hardware-Targeted Model Workflow

Hardware
Algorithm

VideoFileReader Behavioral
(frames) Algorithm

The MATLAB portion of this example loads the input video, runs the behavioral code, runs
the Simulink model to import video frames and export modified video frames, and
compares the MATLAB behavioral results with the Simulink output frames.

Video Source

Create a video file reader object to import a video file into the MATLAB workspace. The
video source file is 240p format. Create a video player object to display the input frame,
Simulink filtered frame, and MATLAB reference frame.

videoIn = vision.VideoFileReader(...
'Filename', 'rhinos.avi',...
'ImageColorSpace', 'Intensity’, ...
'VideoOutputDataType', 'uint8');

numFrm = 10;
% active frame dimensions

1-19

1 vision HDL Toolbox Getting Started

1-20

actPixelsPerLine = 320;
actLines = 240;

% dimensions including blanking
totalPixelsPerLine = 402;
totalLines = 324;

% viewer for results
viewer = vision.DeployableVideoPlayer(...
'Size', 'Custom', ...
'CustomSize', [3*actPixelsPerLine actLines]);

Edge Detection and Overlay

Detect edges in the video frames, and then overlay those edges onto the original frame.
The overlay computation uses an alpha value to mix the two pixel values. The Simulink
model also uses the edgeThreshold and alpha parameters specified here.

The MATLAB edge function interprets the threshold as a double-precision value from 0 to
1. Therefore, express the threshold as a fraction of the range of the uint8 data type,
from 0 to 255. The pixel values returned by the edge function are logical data type. To
convert these pixel values to uint8 type for overlay, multiply by 255. This scaling
operation converts logical ones to 255 and logical zeros stay 0.

edgeThreshold = 8;
alpha = 0.75;
frmFull = uint8(zeros(actLines,actPixelsPerLine,numFrm));
frmRef = frmFull;
for f = 1:numFrm
frmFull(:,:,f) = videoIn();
edges = edge(frmFull(:,:,f), 'Sobel',edgeThreshold/255, 'nothinning');
edges8 = 255*uint8(edges)*(1l-alpha);
frmRef(:,:,f) = alpha*frmFull(:,:,f) + edges8§;
viewer([edges edges8 frmRef(:,:,f)]);
end

Set Up for Simulink Simulation

The Simulink model loads the input video into the model using a Video Source block.
Configure the sample time of the model using the totPixPerFrame variable. This value
includes the inactive pixel regions around the 240-by-320 frames. The Video Source
sample time is 1 time step per frame, and the rate in the streaming pixel sections of the
model is 1/ totPixPerFrame . Set the length of the simulation with the simTime
variable.

MATLAB Vision Algorithm to Simulink Hardware-Targeted Model Workflow

totPixPerFrame = totalPixelsPerLine*totallLines;
simTime = (numFrm+1)*totPixPerFrame;

modelname = 'VerifySLDesignAgainstMLReference';
open_system(modelname) ;

set param(modelname, 'SampleTimeColors','on');

set param(modelname, 'SimulationCommand', 'Update');
set param(modelname, 'Open','on');

wints D1 t6 [240x320] D I

pixelln poielOut f————— pixel frame fF———7———{In2

ciriin cirlCut

HOL Algarithm

Hardware-Targeted Algorithm
The HDL Algorithm subsystem is designed to support HDL code generation.

The subsystem uses the Edge Detector block to find edges. The output of the block is a
stream of boolean pixel values. The model scales these values to uint8 data type values
for overlay.

The block returns the pixel stream of detected edges after several lines of latency, due to
internal line buffers and filter logic. Before performing overlay, the model must delay the
input stream to match the edge stream. The Pixel Stream Aligner block performs this
alignment using the control signals of the output edge stream as a reference. This block
stores the input stream in a FIFO until the detected edges are available.

The Image Overlay subsystem scales both streams by the alpha ratio and adds them
together. With hardware implementation in mind, the Image Overlay subsystem includes
pipeline stages around each multiplier and after the adder.

For more details of this edge detector design, see the “Edge Detection and Image
Overlay” example.

open_system([modelname '/HDL Algorithm']);

1-21

1 vision HDL Toolbox Getting Started

Image Overay

wintd D1
(@D | pixel el uintd 01 o 2 |8 b undl 2 [Eman
pixelin
i Gain2 uinip 01
f EEE—
Linia — winta D1 Lint3 [wintd Linia D1
pixslconirol D1 T P o RetP ixel ‘B—b -
C o9 boolean D1 | wint? P1
cirlin L —plpixel Edge »H ¥ reiPin Gaint
umla 1
Sabel 0F
pixelcontral 01 pixalcontrol D1 2 pixalcontral D1 ixelcontrol 01
i ctrd . refCtri 7 D
l——l ctriQut
Eezlnim e Fixel Stream Alignar

Run Simulink Model

Run the Simulink model to return ten frames overlaid with the detected edges.
sim('VerifySLDesignAgainstMLReference');
Compare Simulink Results with MATLAB Results

Compare each video frame returned from Simulink with the result returned by the
MATLAB behavioral code. The images look very similar but have small pixel value
differences due to overlay mixing. The MATLAB overlay mixing is done using floating-
point values, and the Simulink overlay mixing is done using fixed-point values. This
comparison counts pixels in each frame whose values differ by more than 2 and calculates
the peak-signal-to-noise ratio (PSNR) between the frames. To view the detailed
differences at each frame, uncomment the last two lines in the loop.

for f = 1l:numFrm
frmResult = frmQut.signals.values(:,:,f);
viewer([frmFull(:,:,f) frmResult frmRef(:,:,f)]);
diff = frmRef(:,:,f) - frmResult;
errcnt = sum(diff(:) > 2);

noisecheck = psnr(frmRef(:,:,f),frmResult);
fprintf(['\nFrame #%d has %d pixels that differ from behavioral result (by more th:
%bar3(diff);
%Sviewer([frmResult frmRef(:,:,f) diff]l);
end

Frame #1 has 2 pixels that differ from behavioral result (by more than 2). PSNR = 48.3:
Frame #2 has 1 pixels that differ from behavioral result (by more than 2). PSNR = 48.7:
Frame #3 has 1 pixels that differ from behavioral result (by more than 2). PSNR = 48.8

1-22

See Also

Frame #4 has 2 pixels that differ from behavioral result (by more than 2). PSNR = 48.6¢
Frame #5 has 2 pixels that differ from behavioral result (by more than 2). PSNR = 48.7(
Frame #6 has 4 pixels that differ from behavioral result (by more than 2). PSNR = 48.2
Frame #7 has 2 pixels that differ from behavioral result (by more than 2). PSNR = 48.8:
Frame #8 has 3 pixels that differ from behavioral result (by more than 2). PSNR = 48.5¢

Frame #9 has 3 pixels that differ from behavioral result (by more than 2). PSNR = 48.5!

Frame #10 has 3 pixels that differ from behavioral result (by more than 2). PSNR = 48.'

&\ Deployable Video Player - [m} *

Generate HDL Code and Verify Its Behavior

Once your design is working in simulation, you can use HDL Coder™ to generate HDL
code and a test bench for the HDL Algorithm subsystem.

Generate HDL code
Generate HDL Test bench

makehdl([modelname '/HDL Algorithm'])
makehdltb([modelname '/HDL Algorithm'])

[}
%
[}

%

See Also
Edge Detector | Pixel Stream Aligner

1-23

1 vision HDL Toolbox Getting Started

More About
. “Streaming Pixel Interface”
. “Configure the Simulink Environment for HDL Video Processing” on page 1-25

. “Edge Detection and Image Overlay”

1-24

Configure the Simulink Environment for HDL Video Processing

Configure the Simulink Environment for HDL Video
Processing

In this section...

“About Simulink Model Templates” on page 1-25
“Create Model Using Vision HDL Toolbox Model Template” on page 1-25
“Vision HDL Toolbox Model Template” on page 1-26

About Simulink Model Templates

Simulink model templates provide common configuration settings and best practices for
new models. Instead of the default canvas of a new model, select a template model to help
you get started.

For more information on Simulink model templates, see “Create a Model” (Simulink).

Create Model Using Vision HDL Toolbox Model Template

To use the Vision HDL Toolbox model template:

Click the Simulink button, i?' or type simulink at the MATLAB command prompt.

2 On the Simulink start page, find the Vision HDL Toolbox section, and click the Basic
Model template.

1-25

1 vision HDL Toolbox Getting Started

New Examples

vision hdl ¥ | All Templates w E

> HDL Coder
> LTE HDL Toolbox
» Simulink Support Package for PARROT Minidrones

v Wision HDL Toolbox

Basic Model

A new model, with the template contents and settings, opens in the Simulink Editor. Click
File > Save as to save the model.

You can also create a new model from the template on the command line.

new_system my visionhdl model FromTemplate visionhdl basic.sltx
open_system my visionhdl model

Vision HDL Toolbox Model Template
Basic Model Template

The Vision HDL Toolbox Basic Model template includes the following features:

* Blocks to convert framed video data to a pixel stream, and to convert the output pixel
stream back to full-frame video

* An empty behavioral model subsystem

1-26

Configure the Simulink Environment for HDL Video Processing

* An empty HDL-targeted subsystem
» Display blocks to compare the results of the two subsystems

* Delay blocks on the input and behavioral model data paths. These delays match the
one-frame delay introduced by the Pixels To Frame conversion on the HDL model data
path.

This template also configures the model for HDL code generation.

¥ untitled - Simulink [E=5 Eo8 =3
File Edit View Display Diagram Simulation Analysis Code Tools Help
m h - @ A v E@ % (») 153 @ v simTime Accelerator '] © - B~
= C[5] &/)
untitled
® |[Pa|untitied » hd
. . Video
pfimagein i ut »
E3 mage mag=0 Image .
=
EIalanD{TnH EI:‘_ Delay |mput Video Vi
p idec Viewsr
(B Thines.avi plimagein imageCut plimagein imagsOut » Videa
|esired sample time is‘ Image Viewer
D Video Source
Behavior sl Algorithm Balance HDL Delay - -
N Behavioral Video Viewer
{Behavioral)
HDL Videc Viewer
with Ensble
piez! | picelln pieziCut | piezl frame] In1
| frameFrame To Pixels Fixels To Frame n
ctrl P citrll ctriOut P cirl walidOut
Frame To Piek HDL Algorithm Fieels To Frame
The model comprises of free video streams displayed on Te video viewers.
1. The first video viewer displays e input video stream.
2 The Input video ks passed Mrough e Banavioral Akgorim subsystem whik represants !he full-frame model of the aigarinm 1o be pored to HOL.
The output of e Befavioral Algoriinm subsystem ks displayed on e Behaviaral Video Viewer.
3.On e Mird stream, e input video ks converted 10 3 streaming phel farmat using he Frame o Pleels blocks, passed fnough he HDL Algorinm
‘subsysiem and hen comerted Dack 10 3 frame using he Piels 10 Frame biock.
4. The model ks configuined for HDL code generation using e hdlsetup function.
5 The video format £ defined by Kiosa] Simultstion Callback Parameters (File = Modsl Proparties = Lodel Proparties - Calliacks - InkFon)
6. To run ks model, you must have 3 license for he Computer Vision System Toola™.
You gz
1. Aad bilocks 10 e Beravioral Algarim and HDL algarinm subsysiems.
@ 2 Crange e vigen Tt by chEnging e s2Tings I e Voo source. Frame To Plisls and Phsts To Frame blosks
3 Generae MO code TOr e SO AT SU0sjEE Oy MigM-Clicing On e Sutsjsiem - HOL Coder - Genersie HOL or Sussjsiem
|4 | 1 3
Ready 100% FixedStepDiscrete

This template uses the Video Source and Video Viewer blocks from Computer Vision
Toolbox™.

1-27

1 vision HDL Toolbox Getting Started

1-28

Due to serial processing, Vision HDL Toolbox simulation can be time-consuming for large
images. You can work around this limitation by designing and debugging with a small
image, and then increasing the size before final testing and HDL code generation. The
pixel stream control signals allow most blocks, except for those for frame and pixel
conversion, to be independent of image size. To change image size, modify the Frame To
Pixels and Pixels To Frame block parameters only. To simplify a size change, use variables
for custom-size image dimensions. This template uses the standard 240p format and also
provides image dimension variables in the callback function, InitFcn. These variables
control the sample time on the Video Source and the simulation stop time. To view or edit
this function, click File > Model Properties > Model Properties, select the Callbacks
tab, and then click InitFcn*,

This template includes the following features that assist with HDL code generation:

» Configures Solver settings equivalent to calling hdlsetup

» Displays data rates and data types in the Model Editor

* Creates an instance of pixelcontrolbus in the workspace (in InitFcn)
* Enables fileI0 mode when generating an HDL test bench

See Also

Related Examples
. “Design Video Processing Algorithms for HDL in Simulink” on page 1-3

